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ABSTRACT: This study comprehensively assesses the overall impact of dropsondes on tropical cyclone (TC) forecasts.
We compare two experiments to quantify dropsonde impact: one that assimilated and another that denied dropsonde ob-
servations. These experiments used a basin-scale, multistorm configuration of the Hurricane Weather Research and Fore-
casting Model (HWRF) and covered active North Atlantic basin periods during the 2017–20 hurricane seasons. The
importance of a sufficiently large sample size as well as thoroughly understanding the error distribution by stratifying re-
sults are highlighted by this work. Overall, dropsondes directly improved forecasts during sampled periods and indirectly
impacted forecasts during unsampled periods. Benefits for forecasts of track, intensity, and outer wind radii were more pro-
nounced during sampled periods. The forecast improvements of outer wind radii were most notable given the impact that
TC size has on TC-hazards forecasts. Additionally, robustly observing the inner- and near-core region was necessary for
hurricane-force wind radii forecasts. Yet, these benefits were heavily dependent on the data assimilation (DA) system qual-
ity. More specifically, dropsondes only improved forecasts when the analysis used mesoscale error covariance derived from
a cycled HWRF ensemble, suggesting that it is a vital DA component. Further, while forecast improvements were found
regardless of initial classification and in steady-state TCs, TCs undergoing an intensity change had diminished benefits. The
diminished benefits during intensity change probably reflect continued DA deficiencies. Thus, improving DA system qual-
ity and observing system limitations would likely enhance dropsonde impacts.

SIGNIFICANCE STATEMENT: This study uses a regional hurricane model to conduct the most comprehensive as-
sessment of the impact of dropsondes on tropical cyclone (TC) forecasts to date. The main finding is that dropsondes
can improve many aspects of TC forecasts if their data are assimilated with sufficiently advanced assimilation techni-
ques. Particularly notable is the impact of dropsondes on TC outer-wind-radii forecasts, since improving those forecasts
leads to more effective TC-hazard forecasts.

KEYWORDS: Hurricanes/typhoons; Dropsondes; Forecast verification/skill; Data assimilation; Model evaluation/
performance; Numerical weather prediction/forecasting

1. Introduction

Over the past several decades, numerous peer-reviewed
studies have quantified the impact of tropical cyclone (TC) air-
borne reconnaissance data on numerical weather prediction
(NWP) model forecasts. These types of studies are needed
since simply adding additional data to forecast models, even
high-quality data, does not ensure improved forecasts. Perhaps
most valuable for understanding the impact of reconnaissance
data are studies that used large, multiyear samples, as these are
less subject to inherent variability among TCs or even years
(e.g., Aberson 2010; Weng and Zhang 2016; Tong et al. 2018;
Zawislak et al. 2022; Sippel et al. 2022). While these studies
varied in the type of reconnaissance data assessed (i.e., individ-
ual types of reconnaissance data and overall), they all found
that airborne reconnaissance data generally benefit TC fore-
casts, and these benefits increase with more advanced data
assimilation (DA) and modeling systems.

Despite the documented benefits of reconnaissance data, the
above studies leave some important questions unanswered. For

example, only two of the above studies assessed how reconnais-
sance impacts vary by TC intensity [Tong et al. (2018, hereafter
T18) and Sippel et al. (2022)]. In particular, T18 found degraded
reconnaissance impact in strong TCs in the 2013 version of the
National Centers for Environmental Prediction (NCEP) Hurri-
cane Weather Research and Forecasting Model (HWRF).
Though the shortcomings that caused that degradation seem to
have since been addressed (e.g., Zawislak et al. 2022), no subse-
quent assessment has thoroughly reexamined the intensity-
dependent impact of reconnaissance data on TC forecasts using
HWRF. Further, while most of the studies listed above assessed
the impacts of reconnaissance during sampled periods, only
Sippel et al. (2022) compared that direct impact to the effect of
reconnaissance on TCs during unsampled periods.

From the suite of currently operationally available recon-
naissance data,1 it is particularly useful to understand the
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1 This includes high-density observations (HDOBs) from flight
level (e.g., temperature, specific humidity, and wind) and from the
stepped frequency microwave radiometer (SFMR), radial velocity
from the tail Doppler radar (TDR), and pressure, temperature,
relative humidity, and horizontal winds from global positioning
satellite (GPS) dropsondes.
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impacts of global positioning system (GPS) dropsondes on
TC forecasts. Dropsondes are expendable and come with a
substantial cost (around $800 each; M. Brennan 2022, per-
sonal communication), and since at least 20–30 dropsondes
are launched per flight, they add considerably to the cost of a
typical airborne mission. Yet, this added cost could be justi-
fied if dropsondes improve TC forecasts and subsequent
warnings and help reduce evacuation footprints, economic im-
pact, and loss of life. Thus, numerous studies have assessed
the overall2 impact of dropsonde on TC forecasts.

Previous research has generally found that overall, drop-
sondes improve TC track and intensity forecasts in both re-
gional and global models. Yet, a major shortcoming of those
studies is that large sample sizes have rarely been used. This

makes the systematic assessment of their impacts difficult due
to year-to-year, TC-to-TC, and even forecast-to-forecast vari-
ability. To demonstrate this, Fig. 1 both summarizes the over-
all impact of dropsondes from previous observing system
experiments (OSEs; i.e., data-denial experiments with real
data) in peer-reviewed literature3 and highlights this sample-
size drawback. Dropsonde impacts have generally been posi-
tive for track (Fig. 1a), though results varied substantially
between individual experiments. The very small sample sizes
used by nearly all OSEs included in Fig. 1 perhaps contrib-
uted to this variability. Note that only three track-impact as-
sessments used a sample of 100 or more cases (Fig. 1a; thick
yellow lines; Aberson 2010, 2011). Previous work assessing
dropsonde impacts on TC maximum sustained 10-m wind

FIG. 1. Skill from 32 OSEs in the literature that quantified the overall impact of dropsondes on TC forecasts of
(a) track (TRK) and (b) maximum sustained 10-m wind speed (VMAX). The x axis is forecast lead time. The y axis is
relative skill with respect to experiments without assimilated dropsonde observations. The number of OSEs in each
graphic is given in the graphic title as N. Note that the y-axis maximum in (b) is capped at 50 despite one OSE having
skill values that were far outside the y-axis limits. The colored lines indicate the number of individual forecasts
(FCSTS) in each experiment, with the number of studies for both variables with 1–9, 10–49, 50–99, or$100 individual
forecasts given in the legend. Note that those OSEs with 100 or more individual forecasts (yellow) are given a thicker
line, for contrast. The mean (black solid line) and median (black dashed line) across all OSEs are also shown, with
their averages given in the bottom-right corner. Results from the following papers are included: Franklin and
DeMaria (1992), Burpee et al. (1996), Shi et al. (1996), Aberson and Franklin (1999), Aberson (2002), Aberson and
Etherton (2006), Wu et al. (2007), Pu et al. (2008), Yamaguchi et al. (2009), Harnisch andWeissmann (2010), Aberson
(2010, 2011), Chou et al. (2011), Wu et al. (2012), and Majumdar et al. (2013).

2 Studies have also assessed the impact of dropsondes from specific
aircraft (e.g., NASA’s high-altitude Global Hawk; Christophersen
et al. 2017, 2018; Kren et al. 2018; Wick et al. 2020) and the impact of
dropsondes that target specific regions near the TC or in the synoptic
environment (e.g., Aberson 2003; Yamaguchi et al. 2009; Majumdar
2016; Torn 2020, 2021). Generally, improvement was found in both
global and regional models due to dropsonde assimilation.

3 These studies were from 15 papers (see Fig. 1 caption) cover-
ing the years 1992–2022 that documented the overall impact of
dropsondes on TC forecasts. Note that they had large variability in
the type of model used (e.g., global or regional), the DA method
applied (e.g., three- or four-dimensional variational or ensemble–
variational), the sample size, and the source of the dropsondes
(e.g., field campaigns or specific aircraft).

WEATHER AND FORECAS T ING VOLUME 38790

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/15/23 06:20 PM UTC



speed is even more limited (Fig. 1b), with only two large-
sample OSEs conducted (Fig. 1b; thick yellow lines; Aberson
2010). Not shown is that only two OSEs quantified the impact
of dropsondes on minimum sea level pressure, though they
only assessed the impact through 36 h, and neither used a
large sample. Finally, no study has quantitatively assessed the
impact of dropsondes on forecasts of significant wind radii as-
sociated with TCs. This is a particularly important omission
since the size of a tropical cyclone correlates strongly with its
damage potential (Powell and Reinhold 2007, e.g.,) and is im-
portant for TC-hazards forecasts and warnings.

To address the shortcomings found in the literature for
both reconnaissance and dropsonde data-impact studies, this
study conducts the most comprehensive assessment of the
overall impact of dropsondes on NWP-model TC track, inten-
sity, and significant-wind-radii forecasts to date. In doing so, it
also represents the most comprehensive assessment of the im-
pact of any airborne observing system on TC forecasts to
date. Here, impact was quantified during active periods in the
North Atlantic basin (NATL; including the North Atlantic
Ocean, the Gulf of Mexico, and the Caribbean Sea) within
the 2017–20 hurricane seasons using the 2020 version of the
basin-scale, multistorm configuration of HWRF. The full sam-
ple was first stratified to assess data impact during sampled
and unsampled periods and any interannual variability pre-
sent. Further stratifications allowed for comparison with previ-
ous studies such as T18 and facilitated a qualitative assessment
of the DA system. Among these are stratifications by initial
Saffir–Simpson-scale classification (Simpson and Saffir 1974),
ongoing intensity change, and the covariance choice used for
inner-core DA.

Though this study does not directly examine sensitivity to
the details of the DA system, many of the results here strongly
suggest that DA limitations modulate the benefits of drop-
sondes. This warrants a brief review of pertinent inner core
DA studies. Specifically, using appropriate mesoscale error co-
variance is crucial for improving tropical cyclone forecasts.
Zhang et al. (2009) first showed this with an experimental re-
search system that used a cycled ensemble Kalman filter
(EnKF). More recently, Lu et al. (2017a, hereafter L17)
showed that assimilating inner-core data with error covariance
from the NCEP Global Data Assimilation System (GDAS)
did not improve forecasts of Hurricane Sandy (2012). On the
other hand, assimilating the same data with mesoscale error
covariance derived from an EnKF-cycled HWRF ensemble
(hereafter, HWRF-cycled covariance) generally did improve
the forecasts. Further, T18 used GDAS covariance in their
much larger reconnaissance impact assessment and found ma-
jor problems when assimilating inner-core reconnaissance data
in HWRF. As described above, the reconnaissance data signif-
icantly degraded forecasts of hurricanes, in part due to subop-
timal error covariance for inner-core DA. In some cases,
the degradation extended through the entire forecast. As de-
scribed in detail in section 2a, the operational HWRF has
advanced considerably since T18, most notably by using
HWRF-cycled covariance for particular TCs. As such, this
study presents an excellent opportunity to compare with the
results from L17 and T18.

The rest of this paper is organized as follows: section 2 de-
scribes the data and methods used, section 3 focuses on the
impact of dropsondes on TC forecasts in the NATL, section 4
briefly discusses the impact of dropsondes on TC forecasts in
the eastern North Pacific basin (EPAC), and section 5 pro-
vides a summary and recommendations for future work.

2. Data and methods

This section provides a description of the model and DA sys-
tem (section 2a), the dropsonde observing systems (section 2b),
and the experiment setup and scope (section 2c). Also detailed
are the verification methods used (section 2d) including stratifi-
cations of the full sample taken [section 2d(1)] and metrics used
in analysis [section 2d(2)]. The consistency metric introduced in
Ditchek et al. (2023) will be used for analysis and is briefly de-
tailed in section 2d(2).

a. Model and DA system

HWRF is a triply nested, nonhydrostatic, coupled atmosphere–
ocean NWPmodel capable of producing accurate, high-resolution
forecasts every 6 h for TCs. The outermost domain (i.e., the par-
ent domain; D01) captures the evolution of the environment
around the TC, while the telescopic nests (D02 and D03) follow
TCs to better simulate their evolution. The 2020 version of
HWRF (H220) used respective resolutions of 13.5, 4.5, and
1.5 km for D01, D02, and D03 along with 75 vertical levels and a
model top of 10 hPa. HWRF includes a three-dimensional
ensemble–variational (3DEnVar) hybrid DA system based on a
Gridpoint Statistical Interpolation (GSI) analysis system to pro-
duce an analysis from which the forecast is initialized. Physics
schemes utilized include the Ferrier–Aligo cloud microphysics
scheme, a scale-aware Simplified Arakawa–Schubert (SAS) cu-
mulus parameterization, the Rapid Radiative Transfer Model for
GCMs (RRTMG) radiation scheme for both longwave and short-
wave, the Noah land surface model (LSM), the GFDL model
surface layer scheme, and the GFS hybrid eddy-diffusivity mass-
flux (EDMF) planetary boundary layer parameterization. The
horizontal localization correlation length varies by domain,
being 300 and 150 km for D02 and D03, respectively. The verti-
cal localization correlation length is 0.5 ln(p) for both domains,
where p is in centibars (cbar). For more details on the model
configuration and the DA system, please see (T18 and Biswas
et al. 2018).

The “basin-scale” HWRF (HWRF-B; Zhang et al. 2016;
Alaka et al. 2017, 2019, 2020, 2022) used in this study is an ex-
perimental, parallel, multistorm version of HWRF that was
developed by NOAA’s Hurricane Research Division (HRD)
of the Atlantic Oceanographic and Meteorological Labora-
tory (AOML) in collaboration with the NOAA NCEP Envi-
ronmental Modeling Center (EMC) and the Developmental
Testbed Center (DTC). HWRF-B is identical to HWRF ex-
cept in two key ways (Alaka et al. 2022):

• HWRF-B contains a large, static parent domain that covers
nearly the entire area of responsibility of NOAA’s Na-
tional Hurricane Center (NHC; i.e., the North Atlantic and
eastern North Pacific hurricane basins), while HWRF has a
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smaller parent domain that relocates from one forecast to
the next.

• HWRF-B features TC-following, telescopic nests for multi-
ple TCs per model integration, while HWRF uses only one
set of telescopic nests for one TC per model integration.

These two differences enable HWRF-B to better resolve
TC-TC interactions, synoptic-scale features, TC genesis, and
other features (Alaka et al. 2022). For details on how the per-
formance of HWRF-B compares to HWRF, see Alaka et al.
(2017, 2020, 2022).

The 2020 version of HWRF-B (HB20) used in this study
is identical to H220 except in the two ways described above.
In HB20, TC-following nests are configured for up to five
TCs within the same outermost domain (Fig. 2). They are
triggered by the presence of disturbances or TCs in the trop-
ical cyclone vitals database (TCVitals4). For each domain,
HB20 uses a different initialization procedure as related to
DA. The parent domain (D01) has no DA}it is initialized by
directly interpolating the global analysis onto D01. On the other
hand, the TC-following nests (D02 and D03) do use DA. For
D02, the ensemble covariance in GSI comes from the previous
cycle’s 80-member NCEP’s Global DA System (GDAS) ensem-
ble 6-h forecasts. For D03, as with H220, the source of the en-
semble covariance depends on the TC priority.

For “low-priority” TCs (i.e., TCs that are expected to remain
weak, have minimal impacts and/or do not have reconnaissance
data), the previous cycle’s 80-member NCEP GDAS ensemble
6-h forecasts provides the D03 flow-dependent covariance.

This is largely the same configuration described in T18. While
this covariance choice for D03 is suboptimal, it has performed
reasonably well for weaker TCs.

For “high-priority” TCs (i.e., TCs that are forecast to inten-
sify, be high impact, and/or have reconnaissance data), a more
advanced procedure is used. In particular, the D03 flow-
dependent covariance is calculated from a 40-member D02
ensemble native to HB20 whose perturbations are updated
each cycle with an EnKF. This configuration, which is similar
to that of L17, benefits intensity forecasts since GDAS covari-
ance alone can lead to short-term negative intensity biases
that are especially problematic for stronger TCs (L17 and T18).
As discussed in section 1, a major intent of using HWRF-cycled
covariance is to benefit situations with inner-core data.

Computational constraints in operations do not permit
HWRF-cycled covariance to run for more than one TC at a
time. Thus, if more than one TC has ongoing reconnaissance,
the TC with the greatest overall threat uses HWRF-cycled co-
variance, while the others use GDAS covariance. To facilitate
comparison with HWRF, HB20 uses a similar concept as in
operations. Thus, some of the TCs with reconnaissance in this
study also use GDAS covariance for DA.

b. Dropsonde observing systems

This study assesses the impacts of dropsondes released
into TCs between 2017 and 2020 from four different types
of aircraft: the U.S. Air Force Reserve’s low–midaltitude
WC-130J (C-130), NOAA’s low–midaltitude WP-3D (P-3),
NOAA’s high-altitude Gulfstream IV-SP (G-IV), and
NASA’s high-altitude Global Hawk (GH).5 The resulting

FIG. 2. Visualization of the domain and high-resolution, movable nest differences between
HB20 (dark purple) and H220 (pink). The black box shows NHC’s area of responsibility includ-
ing the NATL and EPAC.

4 TCVitals contains operational estimates of a TC’s position, in-
tensity, significant wind radii, and motion (Trahan and Sparling
2012).

5 Only two GH flights occurred during the time period of this
study: one during Harvey (2017) and another during Lidia (2017).
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atmospheric profiles of quality-controlled pressure, temper-
ature, relative humidity, and horizontal winds were trans-
mitted in TEMP DROP messages from the aircraft (NOAA
2020).

To account for the horizontal advection of dropsondes with
height (i.e., dropsonde drift), both H220 and its parallel HB20
assimilate dropsonde data at horizontal locations to the near-
est hundredth of a degree based on an algorithm originally
developed at HRD (Aberson et al. 2017). That algorithm uses
information from the 62626 section of the TEMP DROP mes-
sage as well as wind data from the main body of the TEMP
DROP message for the location estimates, which are typically
accurate to within 0.5 km. This step is necessary since drop-
sonde locations used elsewhere at NCEP (e.g., in the opera-
tional GFS) are derived from the main body of TEMP DROP
messages, which contains only the initial release point to the
nearest tenth of a degree. Since dropsondes can sometimes
travel azimuthal distances exceeding 1808 in the eyewall of a
hurricane, assimilating dropsonde observations as a profile
can result in unphysical analysis increments (Aberson 2008).
Note that this postprocessed data only includes the same man-
datory and significant levels from the original TEMP DROP
message.

Four substantial changes in dropsonde TC sampling oc-
curred during the 2017–20 period. Beginning experimentally
in 2017 and implemented operationally in 2018, dropsondes
were released at the end points of C-130 alpha-pattern forma-
tions (around 150–200 km from the TC center). Also begin-
ning in 2018, midpoint dropsondes released at a radius of
around 80 km became fairly routine on P-3 missions. Addi-
tionally, in 2017 the G-IV only conducted one circumnaviga-
tion around TCs at around 330 km from the TC center.
Beginning in 2018, the G-IV began to conduct an additional
circumnavigation at around 165 km when possible (Sippel

2020; Sippel et al. 2021). Figure 3 gives representative exam-
ples of the C-130, P-3, and G-IV flight patterns with an indica-
tion of observing system changes after 2017. Finally,
beginning experimentally in 2017 and implemented opera-
tionally in 2019, ensemble sensitivity metrics described in
Torn (2020, 2021) have guided environmental sampling con-
ducted by the G-IV. Because of these substantial changes in
dropsonde usage over the period of assessment, this study
also investigates the interannual differences in dropsonde
impact.

c. Experiment setup and scope

Two experiments together quantify the impact of drop-
sondes on TC forecasts: 1) the “All Dropsondes” experiment
(ALL; i.e., all available dropsonde observations were assimi-
lated if they did not fail quality control checks in GSI6) and
2) the “No Dropondes” experiment (NO; i.e., dropsonde ob-
servations were not assimilated). Both experiments otherwise
assimilated all conventional, reconnaissance, and satellite
data assimilated into H220 (Ditchek et al. 2022).

To maximize the number of 120-h forecasts included in the
assessment, each experiment ran for eight forecast blocks7

covering active NATL periods within the 2017–20 hurricane
seasons (Table 1). Briefly summarizing the table, experiments

FIG. 3. Representative examples of the (a) C-130 “alpha” pattern, (b) P-3 “butterfly” pattern, and (c) G-IV circumnavigation-ring sur-
veillance pattern, with dropsondes included through 2017 in blue, additional dropsondes added after 2017 in gold, and the additional G-IV
circumnavigation added after 2017 as the dashed black line. Note that (c) does not include those G-IV dropsondes released in the large-
scale environment.

6 In H220 and HB20 GSI rejects observations when the differ-
ence between the first guess and observation (i.e., innovation) is
larger than a predefined multiple of the observation error. Obser-
vation errors for dropsondes are inflated linearly proportional to
the magnitude of the innovation so that very few observations ac-
tually get rejected. Those rejected are typically winds in the eye-
wall, but even there an overwhelming majority are assimilated.

7 A forecast block is defined as a continuous set of forecasts in
which at least one TC is active.
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cover about 159 days during the 4-year period and include
634 cycles, resulting in 2139 individual forecasts across 92 TCs.
Of those 92 TCs, 41 had dropsonde observations that were as-
similated in ALL. Since HB20 allows TC-following nests for
up to five TCs per cycle, assimilating dropsonde observations
in one TC affects all concurrent and subsequent TC forecasts
(Alaka et al. 2017, 2020). For the number of assimilated drop-
sonde observations by TC, see Figs. 4c–f.

Figure 4 depicts the number of individually assimilated drop-
sonde temperature8 observations in each TC’s D02 between
2017 and 2020 in a: 1) TC-relative plan view, 2) TC-relative ra-
dial view, and 3) TC-by-TC view. In Fig. 4a, an axisymmetric dis-
tribution of assimilated temperature observations is observed

within 500 km. Between 500 and 1000 km, there is a north-
ward bias from sampling the synoptic environment ahead of
the TC track, mainly by the G-IV. Note that the same drop-
sonde could be assimilated into multiple TCs with overlap-
ping D02 domains. Consequently, data points in Fig. 4 do
not correspond 1 to 1 with actual dropsonde data, especially
at radii . 1000 km. For example, temperature observations
assimilated in the inner core of Harvey (2017) were also as-
similated in nearby Invest 92L’s D02 at large radii (not
shown). In Fig. 4b a frequency peak at radii , 75 km corre-
sponds to the inner-core dropsondes at the center and around
the radius of maximum wind. Radially outward from there, an
increase in the between the first and second peaks corresponds
with dropsondes at the P-3 mid- and end points as well as the
G-IV inner ring. A second peak around 200 km corresponds
with the most frequent location of C-130 end points. Finally, a
third peak just outside the 300-km radius corresponds with

FIG. 4. The number of individually assimilated dropsonde temperature observations in each TC’s D02 for the full
sample in a (a) TC-relative plan view, (b) TC-relative radial view, and TC-by-TC view for (c) 2017, (d) 2018,
(e) 2019, and (f) 2020.

8 Only temperature is shown for simplicity, though temperature,
humidity, and winds were all assimilated.
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G-IV outer-ring circumnavigation dropsondes. The distribution
then tapers off to zero around the 1500-km radius.

d. Verification

This study evaluates the performance of each experiment
separately for each basin by verifying forecasts against the
NHC “best track” (Rappaport et al. 2009) available from
NHC following the standard NHC forecast verification proce-
dures. Forecasts are included if at both the initialization time
and the forecast verifying time the system was classified
by the final best track as a tropical or subtropical cyclone
(Cangialosi 2022). While NHC only verifies individual fore-
casts that initialize east of 1408W in their EPAC samples,
this study includes all TCs initialized between 1408W and
1808. Results presented in this paper are for raw output
from the GFDL vortex tracker (Marchok 2002, 2021) only,
without any additional postprocessing (e.g., interpolation to
produce “early” model forecasts; Cangialosi 2022). Note
that current TC-verification techniques do not account for
uncertainties in position, intensity, and significant wind radii
that are present in both the best track (Torn and Snyder
2012; Landsea and Franklin 2013) and HWRF tracker out-
put (Zhang et al. 2021). Finally, NHC Forecast Verification
procedures reduced the 2139 individual forecasts in the
sample to 1032 verifiable NATL forecasts and 535 verifiable
EPAC forecasts.

Variables assessed include track and two measures of TC
intensity [maximum sustained 10-m wind speed (VMAX);
minimum sea level pressure (PMIN)], as well as the three sig-
nificant surface wind radii reported by NHC [34-kt wind radii
(R34), 50-kt wind radii (R50), and 64-kt wind radii (R64);
1 kt ’ 0.51 m s21)]. Note that samples of R34, R50, and R64
include all quadrants. Finally, this paper presents results from
homogeneous samples. To be included in the homogeneous
sample: 1) for a given forecast, all experiments have to satisfy
the standard NHC forecast verification procedures and 2) a
nonzero numeric value has to exist for a given variable in all
experiments. This second condition only impacts R34, R50,
and R64 samples.

1) STRATIFICATIONS

For each variable, this study stratifies the full sample by a
number of different factors. The first stratification is by data
availability into sampled and unsampled periods. Those fore-
casts with dropsonde observations assimilated in D02 at 0 h
(i.e., sampled periods) are identified as forecasts with direct
dropsonde impact (hereafter, OBS). The remaining forecasts
(i.e., forecasts without dropsonde observations assimilated in
D02 at 0 h) are categorized as forecasts with indirect drop-
sonde impact (hereafter, NOOBS). This indirect dropsonde
impact can occur in two ways: 1) dropsondes assimilated in
the nests for one TC can impact forecasts of other unsampled
TCs in the parent domain and 2) dropsondes assimilated in
previous cycles can impact future cycles. Both OBS and
NOOBS are further stratified by year to demonstrate how
yearly differences impacted the full sample.

Since previous studies have found that the choice of D03
covariance strongly modulates reconnaissance data improve-
ments (e.g., L17 and T18), this study also stratifies OBS by
D03 covariance used: HWRF-cycled (i.e., high-priority TCs)
or GDAS (i.e., low-priority TCs). For brevity, this manu-
script only shows stratification by covariance for the OBS
subset, as NOOBS results did not meaningfully depend on
covariance choice (not shown). Hereafter, the subset of
OBS that utilized the HWRF-cycled covariance will be re-
ferred to as OBS-HCOV, and the subset that used GDAS
will be referred to as OBS-GCOV. Note that stratification by
covariance yields a fairly small sample size (,100 cases) for
OBS-GCOV}since this study focused on active NATL peri-
ods, around 80% of forecasts with assimilated dropsondes at in
D02 at 0 h used HWRF-cycled covariance. Further, stratifying
OBS-HCOV by year or classification also yields undesirably
small samples, so neither OBS-GCOV or OBS-HCOV are fur-
ther stratified. Finally, while it is possible that the covariance
stratification is subject to sampling bias, the results obtained are
qualitatively similar to previously published work (discussed
below).

To explore when sampling TCs had the most impact and to
enable comparison to previous work (i.e., T18), OBS is also

TABLE 2. The nine “overall” and “TC-by-TC” metrics that are calculated and used to analyze results.

Category Metric Description

Overall MAE The mean of the absolute-valued difference between an experiment’s forecast and the best track
at the forecast verifying time

MDAE The median of the absolute-valued difference between an experiment’s forecast and the best
track at the forecast verifying time

MAE skill On average how much better or worse an experiment performed over a baseline experiment
using the MAE

MDAE skill The median of how much better or worse an experiment performed over a baseline experiment
using the MDAE

FSP The percent of forecasts where an experiment outperformed a baseline experiment

TC-by-TC MAE skill The MAE skill for individual TCs
MDAE skill The MDAE skill for individual TCs
FSP The FSP for individual TCs
Sample size The sample size at each lead time for individual TCs
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FIG. 5. This figure is from Ditchek et al. (2023) and includes (a) the outcome matrix of consis-
tency metric conditions and associated thresholds (where “DYN” represents the dynamic FSP
threshold) for whether the sample has fully consistent (one option) or marginally consistent
(three possible options) improvement or degradation at each forecast lead time in one experi-
ment relative to a baseline experiment, (b) a flowchart for determining the outcome for a fore-
cast lead time, and (c) values of the dynamic FSP threshold as a function of the number of indi-
vidual forecasts (FCSTS) based on the equation in the legend. Since the dynamic FSP threshold
will always be 51% for N$ 500, the x axis terminates at N5 500. Also, since FSP cannot exceed
100%, the y axis terminates at 100%. For more details on the consistency metric, see Ditchek
et al. (2023).
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stratified by initial classification into four groups according to
their Saffir–Simpson scale (Simpson and Saffir 1974) best track
classification at 0 h: 1) tropical depression (TD; ,17.5 m s21),
2) tropical storm (TS;$17.5 and,32.9 m s21), 3) category-1–2
hurricane (H12; $32.9 and ,49.4 m s21), and 4) category-3–5
hurricane (H345; $49.4 m s21). Since TDs rarely had assimi-
lated dropsonde observations, there are only nine verifiable
forecasts at 0 h for TDs, resulting in too small of a sample size
to conduct a robust analysis for this study. Finally, to explore
the impact of dropsondes in an evolving vortex, OBS is also
stratified by ongoing intensity change into three groups according
to their 66-h best track intensity change at 0 h: 1) intensifying
(IN; .2.6 m s21), 2) steady state (SS; $22.6 and #2.6 m s21),
and 3) weakening (WK;,22.6 m s21).

2) METRICS

For the full sample and each stratification, nine metrics are
calculated for each variable, including the: 1) mean absolute
error (MAE), 2) median absolute error (MDAE), 3) MAE
skill, 4) MDAE skill, 5) frequency of superior performance
(FSP; Velden and Goldenberg 1987; Goldenberg et al. 2015),
6) MAE TC-by-TC skill, 7) MDAE TC-by-TC skill, 8) TC-by-
TC FSP, and 9) TC-by-TC sample size. Note that skill metrics
use NO as a baseline. Descriptions of each metric can be found
in Table 2.

Since nonnormal distributions can lead to misleading inter-
pretations of MAE, this study assesses consistency between the
MAE skill, MDAE skill, and FSP by using the “consistency

FIG. 6. The MAE and MAE skill for NATL TCs for the ALL (green) and NO (red) experiments for (a) track (TRK), (b) VMAX,
(c) PMIN, (d) R34, (e) R50, and (f) R64. Shaded boxes between the MAE andMAE skill panels indicate forecast lead times where results
were fully consistent, marginally consistent, or not consistent, based on the criteria shown in Fig. 5. The sample size is given below the
x axis in each panel.
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metric” introduced in Ditchek et al. (2023). This new metric ob-
jectively identifies forecast lead times that had fully consistent
or marginally consistent improvement or degradation as defined
in Fig. 5 by applying thresholds to the MAE skill, FSP, and

MDAE skill. For more details on the consistency metric, see
Ditchek et al. (2023).

For this study, discussion will generally focus on results that
are fully consistent or marginally consistent across at least two

FIG. 7. As in Fig. 6, but for the (a) direct (OBS) and (b) indirect (NOOBS) impact of
dropsonde observations on TC track forecasts. Consistency scorecards below both panels
stratify (a) and (b) by year, respectively.

FIG. 8. As in Fig. 6, but for the impact of assimilated dropsonde observations on TC track fore-
casts for TCs that (a) used HWRF-cycled covariance (OBS-HCOV) and (b) used GDAS covari-
ance (OBS-GCOV).
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consecutive lead times. Note that even small improvements in
MAE are notable if they occur consistently within a sample.
Additionally, only MAE and MAE skill graphics with the aug-
mented consistency metric and scorecard graphics displaying
only consistency metric results will be shown. Still, all nine
metrics were still used to analyze results to 1) quantify the
magnitude of any observed improvement or degradation,
2) compare the errors between experiments, and 3) further
identify drivers of distribution skewness.

3. NATL forecast performance

Statistics covering the entire sample indicate that dropsondes
generally improved TC forecasts. For track (Fig. 6a), dropsondes
improved forecasts at long lead times. While VMAX (Fig. 6b) in
ALL improved from 24 h onward, PMIN (Fig. 6c) improved
both on day 1 and at long lead times. Dropsondes also improved
both R34 (Fig. 6d) and R50 (Fig. 6e) forecasts at short lead times.
On the other hand, they degraded R64 forecasts (Fig. 6f). This
degradation, hypothesized to result from observing system inade-
quacies in 2017, will be discussed in section 3c(2).

The rest of this section discusses results for track, intensity,
and significant wind radii. For each variable, stratifying the
full sample by data availability allows exploration of the direct
(OBS) and indirect (NOOBS) impacts of dropsondes on TC
forecasts. Both OBS and NOOBS are further stratified by
year (e.g., OBS-2017). OBS is then stratified 1) by the choice
of inner-core error covariance (e.g., OBS-HCOV and OBS-
GCOV), 2) by the initial TC classification (e.g., OBS-TS), and
3) by the ongoing intensity change (e.g., OBS-SS). For more
details on these stratifications, see section 2d(1).

a. Track

Dropsonde observations directly improved track forecasts,
though their indirect impacts were less clear. Track in ALL
directly improved by 1.7% on average and up to 4.1%

(Fig. 7a), with fully consistent or marginally consistent results
at about half of the lead times $ 30 h. This improvement was
greater than that in the full sample (cf. Figs. 6a and 7a), indi-
cating that dropsonde observations led to better track fore-
casts when directly assimilated into a TC’s nested domains.
Stratifying the results by year (Fig. 7a, bottom) reveals some
interannual variability, which emphasizes the need for a large,
multiyear sample. For example, ALL had degradation in 2017
at short lead times but improvement in 2018–20 at varying short
and long lead times. The indirect impact on track forecasts
(Fig. 7b) was weaker, had less consistency, and had even more in-
terannual variability (Fig. 7b, bottom). Of particular note, drop-
sondes indirectly degraded 2020 TC track forecasts at most lead
times after 48 h, a result not seen in other years.

Using HWRF-cycled covariance appeared to influence
the impact of dropsondes on TC track forecasts. Of note,
OBS-HCOV entirely drove the short-lead-time improvement
in Fig. 7a (cf. Figs. 7a and 8a). Such a strong disparity between
OBS-HCOV and OBS-GCOV was not seen at longer lead
times, where dropsondes positively impacted track forecasts
in both cases. These results are qualitatively similar to L17,
who found that using GDAS covariance likewise degraded
track forecasts compared with using mesoscale covariance
supplied by a cycled ensemble within HWRF.

The impact of dropsondes on track also depended
considerably on the initial classification of the TC. For

FIG. 9. Consistency scorecards for the direct impact of dropsondes
on TC track forecasts, stratified by (a) initial classification (int. class.)
and (b) ongoing intensity change (int. change). Note that tropical de-
pression (TD) is not included in the consistency metric stratification
in (a) due to the small sample size.MAE skill values are also included
on each outcome, for reference. The sample sizes for TS, H12, H345,
IN, SS, andWK at 0 h are 139, 121, 106, 128, 158, and 87, respectively,
and at 120 h they are 34, 31, 62, 61, 54, and 16, respectively.

FIG. 10. A comparison of best track (BT; black), ALL (green),
and NO (red) track forecasts from four individual forecasts in Hur-
ricane Dorian (2019), where white dots are included every 24 h, for
reference. For aesthetic purposes, every 24-h ellipses (yellow) en-
circle the BT, ALL, and NO forecast locations valid at the same
time. Forecast lead times are indicated next to the ellipses for com-
parison to the associated insets, which depict the track MAE (km)
of ALL and NO compared to the best track.
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example, sampling H12 with dropsondes led to more con-
sistent benefits than sampling other intensity classifications
(Fig. 9a). In particular, OBS-H12 had windows of at least
marginally consistent improvement from 36 to 60 h and

from 102 to 126 h. Meanwhile, dropsondes improved fore-
casts of OBS-TS only at long lead times and minimally im-
pacted H345 forecasts. Dropsondes also improved track
at most lead times $ 54 h in steady-state TCs (OBS-SS;

FIG. 11. As in Fig. 7, but for (a),(b) VMAX and (c),(d) PMIN forecasts.
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Fig. 9b) with some consistency, which is a generally more
positive track impact than those seen for other intensity-
change classifications.

The results in Fig. 9 reflect improvement in HWRF physics
and DA since T18, though deficiencies still remain. For exam-
ple, the degradations seen in T18 for stronger TCs did not oc-
cur here, and dropsondes consistently improved H12 track
forecasts. Nevertheless, the degraded impact during intensity
change suggests continued deficiencies in the DA system, as
will be discussed later.

To demonstrate track improvements in a particular case
where dropsondes played a key role in improving forecasts,
Fig. 10 compares ALL, NO, and the observed best track dur-
ing four individual forecasts of Hurricane Dorian (2019) dur-
ing its TS phase. Note that dropsonde observations were
assimilated to initialize each of the four forecasts, and all
made use of the HWRF-cycled covariance. Further, Dor-
ian’s initial VMAX during these four forecasts remained
constant at about 23 m s21. Thus, the OBS-HCOV, TS, and
SS samples all include these forecasts, and the relevant

FIG. 12. As in Fig. 7, but for (a),(b) VMAX and (c),(d) PMIN for TCs that (left) used HWRF-cycled covariance
(OBS-HCOV) and (right) used GDAS covariance (OBS-GCOV).
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results in Figs. 8a and 9 all suggested forecast improvement
with dropsondes. Indeed, ALL outperformed NO at most
lead times after 24 h in each forecast in Fig. 10. Most impor-
tantly, the four forecasts in NO suggested a landfall in
southeastern Florida, while the forecasts in ALL correctly
kept Dorian farther from the coast. These results highlight
the importance of dropsonde sampling during the early part
of Dorian’s lifetime.

b. Intensity

Of all results in this study, the direct impact of dropsondes
on VMAX forecasts perhaps best illustrates the need for a
large, multiyear sample. While Fig. 11a shows that dropsondes
directly improved VMAX on average, the improvement was
quite inconsistent. A reduction of very large errors, mainly in
individual forecasts from 2019 TCs with dropsondes, strongly in-
fluenced the MAE and MAE skill (Fig. 11a, bottom). In fact,
OBS-2019 forecasts in ALL improved VMAX by 14.1% on av-
erage and up to 23.2% (not shown). On the other hand, VMAX
forecasts in ALL degraded in OBS-2017-18 and OBS-2020.
Thus, the indirect impact of dropsondes (NOOBS) actually
drove consistency found in the full sample after 24 h (cf. Figs. 6b
and 11a,b). Most notably, dropsondes indirectly improved
VMAX by 4.7% on average for $96 h. This improvement was
found during 2017, 2018, and partially during 2020 (Fig. 11b,
bottom).

PMIN forecast improvement due to dropsondes varied less, and
at least marginally consistent improvement was found in ALL at

most lead times (Fig. 11c). Between 6 and 18 h, PMIN forecasts in
ALL improved by 6.4% on average and demonstrated some con-
sistency in 2019–20 (Fig. 11c, bottom). Improvement was greater
than that in the full sample (cf. Figs. 6c and 11c), indicating that
dropsondes lead to better 6–18-h PMIN forecasts in individual
forecasts where they were assimilated. As with VMAX, forecasts
from TCs in 2019 with dropsondes drove the magnitude of PMIN
improvements at longer lead times (Fig. 11c, bottom). During that
year, PMIN in ALL improved by 16.4% on average and up to
27.1% (not shown). On the other hand, at least marginally consis-
tent degradation was found forOBS-2017-18 inALL. The indirect
impact of dropsondes on PMIN forecasts wasmostly neutral, but it
did drive the consistency found in the full sample at longest lead
times (cf. Figs. 6c and 11c,d). In particular, TCs from 2017 and
2018 helped improve PMIN in ALL by 2.9% on average at lead
times$ 108 h.

As in L17, choice of inner-core covariance also strongly
influenced the impact of dropsondes on intensity. VMAX im-
provements for ALL in Fig. 11a only occurred when using
HWRF-cycled covariance (OBS-HCOV; Fig. 12a). In fact, drop-
sondes degraded VMAX in OBS-GCOV with marginal consis-
tency across multiple lead times (Fig. 12b). For PMIN, the impact
of dropsondes was again more positive in OBS-HCOV, particu-
larly during the first 24 h. The consistency seen in the OBS-
HCOV stratification (Fig. 12c) was not present in OBS-GCOV
(Fig. 12d). Finally, contrary to VMAX, at the longest lead times
dropsondes improved PMIN forecasts with at least marginal
consistency in bothOBS-GCOVandOBS-HCOV.

FIG. 13. As in Fig. 9, but for (a),(b) VMAX and (c),(d) PMIN.
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Similar to the results for track, the impacts of dropsondes on
the intensity forecast depended on the initial classification. In par-
ticular, sampling TS with dropsondes led to more intensity fore-
cast improvement than sampling other classifications (Fig. 13).
For OBS-TS, dropsondes improved both VMAX and PMIN be-
tween 10% and 30% with at least marginal consistency, though
improvement$ 36 h was mainly due to individual forecasts from
2019 TCs (not shown). Dropsondes also improved PMIN fore-
casts in OBS-H345 between 6 and 48 h, which could be valuable
for landfalling cases since PMIN is better correlated with damage
thanVMAX (e.g., Chavas et al. 2017; Klotzbach et al. 2020).

As with track, most of the intensity improvement in OBS oc-
curred when dropsondes sampled steady-state TCs (OBS-SS;
Figs. 13b,d). For ALL, both VMAX and PMIN forecasts gener-
ally improved between 10% and 20% in OBS-SS $ 36 h with
some consistency. Further, short term improvements were
found for PMIN in intensifying TCs (OBS-IN).

As alluded to previously, the degraded impact of drop-
sondes when intensity changes suggests a deficiency in the
DA system. In particular, Lu et al. (2017b) and Davis et al.
(2021) both showed that even an advanced configuration with
HWRF-cycled covariance can have problems when GSI uses
3DEnVAR. Issues arise because HWRF uses a 6-h window
for DA, and 3DEnVAR does not account for the time evolu-
tion of error covariance. For steady-state systems, the assump-
tion of temporally invariant covariance within the DA window
might suffice, but for situations when the inner core evolves
it does not. Indeed, analyses and forecasts initialized with
inner-core DA improve when GSI uses 4DEnVAR or when

3DEnVAR is cycled with hourly updates (Lu et al. 2017b;
Davis et al. 2021).

To illustrate how the above results relate to an example, Fig. 14
shows the evolution of VMAX forecasts and errors for the same
four individual forecasts given in Fig. 10 for Hurricane Dorian
(2019). Note that the OBS-HCOV (Fig. 12a), OBS-TS (Fig. 13a),
and OBS-SS (Fig. 13b) stratifications all include these forecasts,
and each suggests forecast improvement. Indeed, ALL outper-
formedNOatmost lead times of every forecast in Fig. 14, and the
improvements were substantial in all but Fig. 14c. Most strikingly,
NO consistently kept Dorian as a TS, while ALL captured Dor-
ian’s intensification to a category-4 hurricane in three of the four
representative forecasts. In the forecast that did not forecast Dor-
ian’s intensification (Fig. 14c), the corresponding track forecast
(Fig. 10c) had Dorian making landfall in Hispaniola. This is likely
the reason for the lack of intensification found. Yet, ALL still out-
performed NO at most lead times, particularly at long lead times.
These results again highlight the importance of dropsonde sam-
pling forDorian’s forecasts early in its lifetime.

c. Significant wind radii

This section examines the impacts of dropsondes on TC sig-
nificant-wind-radii forecasts. Impacts on the outer wind radii
(R34 and R50) are discussed separately from R64 due to dis-
tinctly different results for those metrics. Probable reasons for
those differences are discussed below.

1) R34 AND R50

Among all variables evaluated, R34 and R50 forecasts saw the
most consistent impact from dropsonde sampling. Dropsondes
directly improved R34 forecasts 2.4% on average and up to 7.5%
(Fig. 15a) as well as R50 forecasts 3.3% on average and up to
7.2% (Fig. 15c). These improvements were at least marginally
consistent at most lead times and were also greater than those
found in the full sample (Figs. 6d,e).Additionally,ALL improved
upon NO every year in the sample (i.e., interannual stationarity;
Figs. 15a,c, bottom). Dropsondes also indirectly improved R34 at
most lead times through 66 h in ALL with at least marginal con-
sistency (Fig. 15b). While most improvement came from 2017
(Fig. 15b, bottom), various lead times during 2018–20 also saw
fully consistent improvements (Fig. 15b, bottom). Finally, the in-
direct impact of dropsondes on R50 provides yet another exam-
ple of the importance of a multiyear sample. In particular, R50 in
ALL consistently degraded at most lead times . 60 h in 2020,
though such a strong signal did not occur in other years.

Further stratifying the results emphasizes the hypothesis
that the details of DA in HWRF strongly influence the impact
of dropsondes. As with track and intensity, most of the direct
benefits of dropsondes to forecasts of R34 and R50 occurred
in OBS-HCOV (Fig. 16). The disparity of impact between
OBS-HCOV and OBS-GCOV highlights the importance of
using appropriate mesoscale covariance for forecasts of TC
outer wind radii. Note that these results cannot be compared
with L17 since they did not assess the differences in TC outer
wind radii forecasts when using GDAS compared to HWRF-
cycled covariance.

FIG. 14. As in Fig. 10, but for VMAX, where shading from dark
blue to magenta corresponds to the TC classification from TD
through category-5 hurricane (H5).
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Stratifying OBS by initial classification reveals that sampling
hurricanes improved both R34 and R50 forecasts the most, with
H12 having consistent results over a larger window than H345
(Fig. 17). For both variables, multiple lead times inALL saw fully

consistent improvement ofmore than 5%.R34 andR50 forecasts
of OBS-TS also benefited from dropsonde sampling, though
mainly at longer lead times compared to hurricanes (i.e.,$90 h).
While these results cannot be compared with T18 since they did

FIG. 15. As in Fig. 7, but for (a),(b) R34 and (c),(d) R50 forecasts.
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not examine the variability of TC outer-wind-radii forecasts as a
function of TC intensity, the strong positive benefits to TC outer
wind radii seen here for hurricanes are encouraging. Similar to
the results for track and intensity forecasts, dropsondes were
most valuable for TC outer wind radii forecasts when sampling
steady-state TCs (Figs. 17b,d). The diminished benefits for TCs
undergoing intensity change further suggests that the 6-hourly
3DEnVARDA configuration hinders greater positive impacts.

A forecast of Hurricane Dorian (2019) initialized at
1800UTC 29August 2019 demonstrates howR50 improvements

pertain to an individual case. This particular forecast was chosen
since the track and VMAX for ALL and NO were similar
(Figs. 18a,b), which eliminates a source of bias in the outer-wind-
radii comparison. Note that this forecast is included in the
Fig. 16c assessment as well as in theOBS-IN andOBS-H12 strati-
fications in Figs. 17c and 17d sinceDorian was an intensifying cat-
egory-1 hurricane and had assimilated dropsonde observations.
From those results, improvement would be expected, with more
fully consistent improvement found for forecasts that use HWRF-
cycled covariance. Indeed, ALL outperformed NO through about

FIG. 16. As in Fig. 7, but for (a),(b) R34 and (c),(d) R50 for TCs that (left) usedHWRF-cycled covariance (OBS-HCOV)
and (right) usedGDAS covariance (OBS-GCOV).
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36–48 h in Figs. 18c–f, which compares the R50 values in each
quadrant ofDorian.

Figures 18g and 18h demonstrate how this result applies to
the two-dimensional 10-m wind field using the 24-h forecast
lead time as a representative example. For each experiment,
the figure overlays 10-m winds with the observed R50 extent
as well as the ALL and NO R50 extent, respectively. In all
quadrants, R50 in ALL more closely matched the best track
value. This type of TC outer wind radii improvement can be
particularly valuable for landfalling cases.

2) R64

While dropsondes overall improved forecasts of both R34 and
R50 at short lead times (Figs. 6d,e), Fig. 6f indicates that drop-
sondes degraded R64 forecasts. The source of that degradation
was TCs from 2017 that directly assimilated dropsonde
observations (OBS-2017; Fig. 19a, bottom and Fig. 19c).
Fully consistent or marginally consistent degradation oc-
curred at several lead times for OBS-2017, with degradation
of 6.9% on average and up to 23.2%. Similar degradation
was not found for 2018–20 (Fig. 19a, bottom) or for
the indirect impact of dropsondes on TC forecasts of R64
(Fig. 19b). Additionally, the negative 2017 results appeared in
both the OBS-HCOV and OBS-GCOV samples (not shown).

Preliminary analysis suggests that insufficient dropsonde
sampling of the R64 region9 could have caused the degradation
in OBS-2017. Figures 19c–f depicts the number of assimilated
dropsonde observations within the R64 region (gray shading)
for each year, respectively. Notice that there were on average
three times the number of assimilated dropsonde observations
within the R64 region in 2018–20 (Figs. 19d–f) compared to
2017 (Fig. 19c). The most likely reason for this disparity was the
several dropsonde-sampling changes implemented after 2017
(see section 2b and Fig. 3). Thus, the better direct sampling of
the R64 region by dropsondes in 2018–20, particularly the inner
and near-core region (#150 km), seems to have prevented
similar day-1 degradation as found in 2017. Possible reasons
for such sensitivity to sampling strategy include model biases
and inadequate mesoscale error covariance within the DA
system (e.g., Lu et al. 2017b, L17), where a strong horizontal
gradient in sampling could lead to larger errors. Confirming
the above hypothesis would require additional data-denial
experiments for 2018–20, which are outside the scope of this
study.

FIG. 17. As in Fig. 9, but for (a),(b) R34 and (c),(d) R50. The sample sizes for R34 for TS,
H12, H345, IN, SS, and WK at 0 h are 334, 418, 400, 411, 482, and 259, respectively, and at 120 h
are 45, 45, 126, 114, 86, and 19, respectively. For R50 for TS, H12, H345, IN, SS, and WK, the
sample sizes at 0 h are 95, 388, 400, 325, 345, 213, respectively, and at 120 h are 33, 36, 109, 101,
62, 16, respectively.

9 The R64 region is defined as the mean 6 the standard devia-
tion of the best track R64 estimates for a given year.
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FIG. 18. For one individual forecast of Hurricane Dorian (2019) (a),(b) as in Figs. 10 and 14; (c)–(f) a com-
parison of best track (BT; black), ALL (green), and NO (red) R50 forecasts; and (g),(h) the 10-m wind speed
at 24 h (shaded) in ALL and NO, respectively, with the BT, ALL, and NO R50 extents overlaid as well as in
the inset. Note that gray shading in (a)–(f) indicates the 24-h forecast lead time.
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4. EPAC forecast performance
Though this study focuses on active NATL periods, use of HB20

allows for assessment of impacts for EPACTCs as well (Table 1). As
the EPAC sample has about half the size of NATL at 0 h and about

a third at 120 h, no additional stratifications will be shown, and fore-
cast lead times with sample sizes of,10 (i.e., in OBS. 72 h) will not
be assessed.Note that stratifyingOBSbyD03 covariance reveals simi-
lar results to those found in theNATL, though the sample size is tiny.

FIG. 19. The impact of dropsonde on R64 forecasts, including (a),(b) as in Fig. 7, but for R64, (c) the R64 MAE and
MAE skill for OBS-2017, and (d)–(g) the number of assimilated dropsonde observations from 0 to 250 km with the
R64 window (i.e., the mean6 the standard deviation of the best track R64 observations) in gray shading.
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Since relatively few dropsondes were deployed in EPAC
TCs in the periods covered by this study, the sample size for
EPAC OBS is quite small}only 8% of individual EPAC
forecasts had assimilated dropsonde observations (Figs. 4c–f).
Additionally, in those TCs where dropsonde observations
were assimilated, EPAC TCs had fewer total assimilated drop-
sonde observations than NATL TCs (Fig. 4). Thus, NOOBS
constituts nearly the entire full sample. For brevity, the full
sample will not be shown or discussed. Further, given the ba-
sin-scale, multistorm nature of HB20, any impacts seen in
NOOBS are likely due to dropsonde assimilation in NATL
TCs. While far apart, remote impacts to TCs across basins in
HB20 has been previously explored and documented by Alaka
et al. (2022).

The impact of dropsondes on EPAC TC forecasts varied in
the direct (OBS; Fig. 20a) and indirect (NOOBS; Fig. 20b)
samples. Dropsonde observations directly improved EPAC
TC intensity and significant-wind-radii forecasts through 42 h
with some consistency. Thereafter, results were mixed with a
very small sample size. Significant-wind-radii improvements
found were qualitatively similar to those found in NATL TCs
(Fig. 16). Meanwhile, dropsonde observations indirectly im-
proved EPAC track and intensity forecasts at long lead times
with at least marginal consistency. This suggests that dropsondes
assimilated in NATLTCs likely impacted EPAC forecasts. Note
that these intensity results resemble the NOOBS results from
the NATL sample, where dropsondes indirectly improved

forecasts at long lead times. A notable exception is that drop-
sonde observations degraded PMIN in NOOBS with some con-
sistency through 72 h.

5. Conclusions

This study thoroughly quantifies the impact of dropsondes re-
leased into TCs during active NATL periods within the 2017–20
hurricane seasons. To do so, it uses the 2020 version of the
basin-scale, multistorm configuration of HWRF (HB20) to
conduct two experiments: 1) one that assimilated dropsonde ob-
servations (ALL) and 2) one that did not (NO). These experi-
ments included 634 cycles resulting in 2139 individual
forecasts covering 92 TCs, 41 of which had assimilated drop-
sonde observations. Since HB20 has multiple interacting,
high-resolution movable nests that track up to five TCs si-
multaneously within a large, static parent domain, assimilat-
ing dropsondes observation in any TC impacted forecasts of
all TCs in the basin.

The performance of each experiment is evaluated by verifying
forecasts of track, VMAX, PMIN, R34, R50, and R64 against
the final NHC best track available from NHC, following stan-
dard NHC forecast verification procedures (Cangialosi 2022).
Impacts found in the full sample are assessed by examining a va-
riety of metrics and by taking various stratifications of the full
sample to better understand the direct (OBS) and indirect
(NOOBS) impact of dropsondes on TC forecasts in total and by

FIG. 20. As in Fig. 9, but for the (a) direct and (b) indirect impact of dropsondes on EPAC TC
track, intensity, and significant wind radii forecasts. The sample sizes for TRK, VMAX, PMIN, R34,
R50, and R64 for OBS (NOOBS) at 0 h are 37, 37, 37, 130, 102, and 56 (498, 498, 498, 1374, 812, and
581), respectively, and at 120 h are 3, 3, 3, 0, 0, and 0 (144,144, 144, 425, 270, and 121), respectively.
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year. OBS is further stratified by covariance used, by initial clas-
sification, and by ongoing intensity change [section 2d(1)]. To
guide interpretation of results, this paper uses the consistency
metric introduced and detailed in Ditchek et al. (2023). That
metric objectively evaluates the evolution of forecast errors as a
function of lead time based on thresholds applied to three met-
rics: MAE skill, MDAE skill, and the frequency of superior per-
formance (FSP).

Before discussing results on the impact of dropsondes on TC
forecasts, there are three takeaways learned that are applicable
not only to studies that assess the impact of observing systems on
TC forecasts, but also to those studies that assess the impact of
new modeling systems or model upgrades on TC forecasts. First
and foremost, this work highlights the tremendous importance of
conducting large sample, multiyear studies, given year-to-year,
TC-to-TC, and even forecast-to-forecast variability. The results
here strongly indicate that running observation systems tests over
time periods shorter than a few hurricane seasons yields insuffi-
ciently large samples to generate robust assessments. As studies
typically do not have the resources needed for such a comprehen-
sive assessment, sample-size caveats should be emphasized, and
results from small-sample studies should not be generalized.
Second, by using a large sample, stratifications with meaningful
sample sizes can help to diagnose what drives any observed im-
pacts in the full sample. Note that there are a number of stratifi-
cations that can be taken beyond those presented in this study.
For this work, the stratifications reveal areas that can be im-
proved tomaximize data impact. Finally, evenwith large sample
sizes, relying on commonly used metrics like the MAE and/or
MAE skill could lead to misleading conclusions if the error dis-
tributions are skewed, which often occurs. Thus, using metrics
beyond the MAE and MAE skill to understand the distribution
of the errors or using a metric like the consistency metric
(Ditchek et al. 2023) is needed to prevent reaching misleading
conclusions.

By using a large sample, taking multiple stratifications, and
analyzing results with the consistency metric, this study marks
the most comprehensive assessment of the impact of drop-
sondes on NWP forecasts of TC track, intensity, and signifi-
cant wind radii to date. In doing so, it is also the most
comprehensive assessment of any airborne observing system on
TC forecasts to date. The main focus of this paper (section 3)
was on NATL10 forecast performance. To aid in summarizing
the main takeaways from this work, Fig. 21 shows the score-
cards for all forecast variables assessed.

While dropsondes both directly and indirectly impacted NATL
TC forecasts, direct sampling of TCs with dropsondes clearly
yielded the greatest forecast improvements (cf. Figs. 21a,b).
Particularly notable was the impact of dropsondes on TC outer-
wind-radii forecasts, since improving those forecasts can lead to

more effective TC-hazard forecasts, including those for storm
surge, wind, rainfall, and associated freshwater flooding. These
more accurate forecasts can lead to more refined and effective
watches and warnings and also enable emergency managers
and local officials to prepare and execute better preparation,
mitigation, and evacuation strategies during an impending TC
event. This study also found degradation in R64 forecasts dur-
ing the 2017 hurricane season. This degradation probably oc-
curred due to a lower number of inner- and near-core region
(#150 km) observations in 2017 than in subsequent years.
This strongly suggests that sampling the TC inner and near
core with dropsondes is critical for improving forecasts of the
inner-core size.

The direct impact of dropsondes on TC forecasts detailed
above is heavily dependent on DA quality, as nearly all of the
benefits occurred when HWRF-cycled covariance was used
(cf. Figs. 21c,d). In fact, since using GDAS covariance led to
generally neutral to negative impacts, improvements were
even more pronounced in Fig. 21c than in Fig. 21a. While an
additional experiment which disables the use of HWRF-
cycled covariance is needed to concretely quantify its impact (i.e.,
as done in L17), results here do suggest that using mesoscale er-
ror covariance native to HB20 is a vital part of the DA system.
This is broadly consistent with the findings of L17, who demon-
strated that using GDAS covariance to assimilate inner-core data
results in strongly asymmetric and physically unrealistic analysis
increments that can degrade all aspects of a forecast. T18 further
demonstrated that assimilating inner-core data with GDAS co-
variance severely degrades the forecast for hurricanes.

Another important result is that the dropsonde data
benefited all intensity categories (Figs. 21e–g), which repre-
sents a major improvement since T18. In particular, physics
and DA improvements have apparently ameliorated the
degradation seen when various types of reconnaissance data
are assimilated in hurricanes. This reinforces the results
from Zawislak et al. (2022), who showed that the combina-
tion of all reconnaissance data improved operational-
HWRF intensity forecasts in a sample of landfalling U.S.
hurricanes.

Nevertheless, dropsonde observations in this study did have
intensity-dependent impacts. In general, the direct benefits of
dropsondes occurred at earlier lead times for stronger TCs
and at later lead times for weaker TCs. This is qualitatively
similar to results obtained from an earlier reconnaissance im-
pact assessment at NOAA that used the 2019 version of the
operational HWRF, part of which was published in Zawislak
et al. (2022). Stratifying the results shown in Fig. 4 of Zawislak
et al. (2022) by TC intensity reveals that reconnaissance data
improved VMAX forecasts of TS after about 48 h and of H345
before about 54 h (not shown). This general result was also true
for various individual reconnaissance observing systems (e.g.,
TDR and dropsondes), though those results were never pub-
lished. Yet, it is not clear whether the intensity-dependent im-
pacts of reconnaissance data represent a general result or are
specific to HWRF. For example, Sippel et al. (2022) found that
adding reconnaissance data more robustly improved the fore-
casts of hurricanes than TS at longer lead times when using the
operational GFS version 16.

10 Note that dropsondes directly improved EPAC TC intensity
and significant wind radii forecasts at short lead times and indi-
rectly improved EPAC TC track and intensity forecasts at long
lead times (see section 4). Findings were qualitatively similar to
those for NATL TC, indicating that further forecast improvements
are possible by sampling more EPAC TCs with dropsondes. How-
ever, the sample size for the EPAC was relatively small.
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The intensity-dependent results in Figs. 21e–g are particu-
larly important when a TC is nearing landfall, as they indicate
that expanding the frequency of sampling of hurricanes with
dropsondes would lead to more accurate track, PMIN, and
outer-wind-radii forecasts at short lead times. As described
above, this would lead to more refined and effective watches
and warnings as well as aid emergency managers and local offi-
cials. Improvements to PMIN forecasts in OBS-H345 between
6 and 48 h is particularly notable, since PMIN is better corre-
lated with damage than VMAX (e.g., Chavas et al. 2017;
Klotzbach et al. 2020) and is easier to accurately diagnose with
dropsondes than TC-size.

Despite the recent improvements in HWRF, it appears that
DA deficiencies still exist. For example, while assimilated
dropsonde observations mostly improved steady-state (SS)
TCs in this study (Fig. 21i), they had diminished benefits for
TCs undergoing intensity change (cf. Figs. 21h,j). This is par-
ticularly true for VMAX, for which dropsonde observations
improved forecasts 10%–20% in SS TCs but not at all when
intensity was changing (Fig. 13b). This result could reflect the
fact that even with HWRF-cycled covariance, not considering
the evolution of covariance over the 6-h DA windows could
cause large analysis errors in a changing TC. Indeed, Lu et al.
(2017b) and Davis et al. (2021) showed using HWRF-cycled

FIG. 21. Summary graphics of consistency metrics previously displayed for (a),(b) the full sample by data availability from Figs. 7, 11,
and 15; (c),(d) the direct impact by covariance from Figs. 8, 12, and 16; (e)–(g) the direct impact by initial classification from Figs. 9a, 13a,
and 17a; and (h)–(j) the direct impact by ongoing intensity change from Figs. 9b, 13b, and 17b.
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covariance that considered the time evolution within a 6-h win-
dow (through either more frequent DA cycling or 4DEnVAR)
produces superior analyses and forecasts. Further, Christophersen
et al. (2018) used 30-min cycling to assimilate dropsondes from
NASA’s high-altitude Global Hawk and obtained their best
results for non-SS TCs. The present and previous results
combined suggest that dropsondes and other inner-core data
can have a greater impact on forecasts with further DA
improvements.

Though results here suggest that with the appropriate DA
treatment dropsondes can considerably improve many aspects
of TC forecasts, a limitation difficult to overcome is that rela-
tively few TCs have reconnaissance data. In this 2017–20 sam-
ple, only 30% of individual forecasts from NATL TCs have
dropsondes. While assimilating dropsonde observations in ev-
ery cycle of a TC would lead to even further forecast improve-
ments, that is likely not feasible due to limited resources.
Therefore, three suggestions on how to achieve additional
forecast improvements are presented below.

First, the number of individual forecasts with assimilated
dropsonde observations should be increased. Once a TC is
forecast to be a landfall threat, it would be beneficial to assim-
ilate dropsonde observations throughout the entire TC (i.e.,
no radial gaps) in every model cycle through landfall. This
can be achieved with greater investment in reconnaissance re-
sources to allow for expanded use of these observing systems.
In addition to data from dropsondes, NCEP currently assimi-
lates other reconnaissance data that are also known to improve
forecasts, so increasing the amount of TC reconnaissance could
carry forecast benefits far greater than those realized from
dropsondes alone. Similar benefits would likely be extended to
forecasts of pre-TC disturbances, though those cases were not
evaluated in this study.

Second, improvements to dropsonde-observation proc-
essing are needed. Currently, models at NCEP do not use
dropsonde data to their fullest capacity. They instead rely
on postprocessed data from the mandatory and significant
levels in WMO TEMP DROP messages. This is true even
for the improved dropsonde treatment in HWRF, as de-
scribed in section 2b. Ongoing work at AOML suggests that
assimilating superobservations of full-resolution data should
considerably benefit analyses and forecasts (Sellwood et al.
2020).

Finally, investing in the development of superior DAmethods
would also likely improve the impact of dropsondes as well as
all other inner-core data. This paper demonstrated that drop-
sondes generally only benefited forecasts when HWRF-cycled
covariance was used for DA. Results suggest that further
improvements are likely with DA methods that consider the
time-evolution of covariance over shorter periods. Other oppor-
tunities to improve inner-core DA include tuning the DA sys-
tem with improved accounting of observation errors and quality
control (e.g., Aksoy et al. 2022) and improving the manner in
which observations can simultaneously impact the analysis at
multiple scales (e.g., Zhang et al. 2009; Huang et al. 2021). Fur-
ther improvements to inner-core data impact can likely be
achieved by using cutting-edge techniques designed to handle
non-Gaussian error distributions, such as particle filters (e.g.,

Kurosawa and Poterjoy 2022; Poterjoy 2022). For more details
on these potential improvements, see Christophersen et al.
(2022). Given present-day suboptimalities in both observation
processing and DA, the results here likely represent a floor for
dropsonde impact upon which much greater advancements can
be achieved.

Results presented in this study addressed the overall impact
of dropsondes on TC forecasts. While comprehensive, one of
the questions left unanswered is how different dropsonde
sampling strategies might impact forecasts. A companion
study to the present one is quantifying the impact of drop-
sonde sampling as a function of radius from the TC center.
Additionally, as described in section 1, some studies have as-
sessed the impact of dropsondes from specific aircraft and the
impact of dropsondes that target specific regions near the TC
or in the synoptic environment. Two other large-sample, mul-
tiyear studies are under way to specifically examine the im-
pact of various flight-track patterns on TC forecasts. Results
found from all of these studies will help optimize dropsonde
sampling during reconnaissance missions.

Acknowledgments. This research was carried out in part
under the auspices of the Cooperative Institute for Marine
and Atmospheric Studies (CIMAS), a Cooperative Insti-
tute of the University of Miami and the National Oceanic
and Atmospheric Administration, Cooperative Agreement
NA20OAR4320472 while the lead author (Sarah Ditchek)
was supported by the FY18 Hurricane Supplemental
(NOAA Award NA19OAR0220188). Thank you to An-
drew Kren and Karina Apodaca for their guidance and ad-
ministrative assistance, AOML/HRD’s Xuejin Zhang and
Sundararaman (Gopal) Gopalakrishnan for allocating HPC re-
sources for the experiments, Michael Brennan, Kelly Ryan,
and three WAF reviewers (Hui Christophersen, Zhan Zhang,
and one anonymous) for their constructive comments on the
manuscript, Ron McTaggart-Cowan for his suggestions on how
to condense the manuscript so that case study examples could
be added, and EMC and DTC (especially Evan Kalina, Zhan
Zhang, Linlin Pan, Biju Thomas, and Mrinal Biswas) for their
help with model issues encountered. The scientific results and
conclusions, as well as any views or opinions expressed herein,
are those of the author(s) and do not necessarily reflect those
of OAR or the Department of Commerce.

Data availability statement. Experiments were performed
on the NOAA RDHPCS supercomputers Hera, Orion, and
WCOSS, with output archived on NCEI’s High Performance
Storage System (HPSS) for a 5-yr term. This output is not
publicly available, however, those interested in the output can
contact the lead author. The final B-decks (i.e., best tracks)
used for verification are available from NHC and can be found at
https://www.nhc.noaa.gov/data/hurdat. Dropsonde data can be
found on HRD’s Hurricane Field Program’s public-facing web-
site at https://www.aoml.noaa.gov/data-products/. Finally, the
Graphics for OS(S)Es and Other modeling applications on TCs
(GROOT) verification package developed by the lead author
and funded by the Quantitative Observing System Assessment

D I T CHEK E T A L . 813JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/15/23 06:20 PM UTC

https://www.nhc.noaa.gov/data/hurdat
https://www.aoml.noaa.gov/data-products/


Program (QOSAP) and the FY18 Hurricane Supplemental
(NOAA Award NA19OAR0220188) was used to generate
graphics for this publication. It can be found at https://github.
com/sditchek/GROOT.

REFERENCES

Aberson, S. D., 2002: Two years of operational hurricane synoptic
surveillance. Wea. Forecasting, 17, 1101–1110, https://doi.org/
10.1175/1520-0434(2002)017,1101:TYOOHS.2.0.CO;2.

}}, 2003: Targeted observations to improve operational tropical
cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613–
1628, https://doi.org/10.1175//2550.1.

}}, 2008: Large forecast degradations due to synoptic surveil-
lance during the 2004 and 2005 hurricane seasons. Mon. Wea.
Rev., 136, 3138–3150, https://doi.org/10.1175/2007MWR2192.1.

}}, 2010: 10 years of hurricane synoptic surveillance (1997–
2006). Mon. Wea. Rev., 138, 1536–1549, https://doi.org/10.
1175/2009MWR3090.1.

}}, 2011: The impact of dropwindsonde data from the THOR-
PEX Pacific Area Regional Campaign and the NOAA hurri-
cane field program on tropical cyclone forecasts in the Global
Forecast System. Mon. Wea. Rev., 139, 2689–2703, https://doi.
org/10.1175/2011MWR3634.1.

}}, and J. L. Franklin, 1999: Impact on hurricane track and in-
tensity forecasts of GPS dropwindsonde observations from
the first-season flights of the NOAA Gulfstream-IV jet air-
craft. Bull. Amer. Meteor. Soc., 80, 421–428, https://doi.org/10.
1175/1520-0477(1999)080,0421:IOHTAI.2.0.CO;2.

}}, and B. J. Etherton, 2006: Targeting and data assimilation
studies during Hurricane Humberto (2001). J. Atmos. Sci., 63,
175–186, https://doi.org/10.1175/JAS3594.1.

}}, K. J. Sellwood, and P. A. Leighton, 2017: Calculating drop-
windsonde location and time from TEMP-DROP messages
for accurate assimilation and analysis. J. Atmos. Oceanic
Technol., 34, 1673–1678, https://doi.org/10.1175/JTECH-D-17-
0023.1.

Aksoy, A., J. J. Cione, B. A. Dahl, and P. D. Reasor, 2022: Tropi-
cal cyclone data assimilation with Coyote uncrewed aircraft
system observations, very frequent cycling, and a new online
quality control technique. Mon. Wea. Rev., 150, 797–820,
https://doi.org/10.1175/MWR-D-21-0124.1.

Alaka, G. J., Jr., X. Zhang, S. G. Gopalakrishnan, S. B. Golden-
berg, and F. D. Marks, 2017: Performance of basin-scale
HWRF tropical cyclone track forecasts. Wea. Forecasting, 32,
1253–1271, https://doi.org/10.1175/WAF-D-16-0150.1.

}}, }}, }}, Z. Zhang, F. D. Marks, and R. Atlas, 2019:
Track uncertainty in high-resolution HWRF ensemble fore-
casts of Hurricane Joaquin. Wea. Forecasting, 34, 1889–1908,
https://doi.org/10.1175/WAF-D-19-0028.1.

}}, D. Sheinin, B. Thomas, L. Gramer, Z. Zhang, B. Liu, H.-S.
Kim, and A. Mehra, 2020: A hydrodynamical atmosphere/
ocean coupled modeling system for multiple tropical cyclones.
Atmosphere, 11, 869, https://doi.org/10.3390/atmos11080869.

}}, X. Zhang, and S. G. Gopalakrishnan, 2022: High-definition
hurricanes: Improving forecasts with storm-following nests.
Bull. Amer. Meteor. Soc., 103, E680–E703, https://doi.org/10.
1175/BAMS-D-20-0134.1.

Biswas, M. K., and Coauthors, 2018: Hurricane Weather Research
and Forecasting (HWRF) model: 2018 Scientific documentation.
Scientific Doc. HWRF v4.0a, 112 pp., https://dtcenter.org/sites/

default/files/community-code/hwrf/docs/scientific_documents/
HWRFv4.0a_ScientificDoc.pdf.

Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D.
Aberson, 1996: The impact of omega dropwindsondes on op-
erational hurricane track forecast models. Bull. Amer. Me-
teor. Soc., 77, 925–934, https://doi.org/10.1175/1520-0477
(1996)077,0925:TIOODO.2.0.CO;2.

Cangialosi, J. P., 2022: National Hurricane Center Forecast Verifi-
cation Report: 2021 hurricane season. NOAA, 76 pp., https://
www.nhc.noaa.gov/verification/pdfs/Verification_2021.pdf.

Chavas, D. R., K. A. Reed, and J. A. Knaff, 2017: Physical under-
standing of the tropical cyclone wind-pressure relationship.
Nat. Commun., 8, 1360, https://doi.org/10.1038/s41467-017-
01546-9.

Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann,
F. Harnisch, and T. Nakazawa, 2011: The impact of drop-
windsonde observations on typhoon track forecasts in
DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728–1743,
https://doi.org/10.1175/2010MWR3582.1.

Christophersen, H., A. Aksoy, J. Dunion, and K. Sellwood, 2017:
The impact of NASA Global Hawk unmanned aircraft drop-
windsonde observations on tropical cyclone track, intensity,
and structure: Case studies. Mon. Wea. Rev., 145, 1817–1830,
https://doi.org/10.1175/MWR-D-16-0332.1.

}}, }}, }}, and S. Aberson, 2018: Composite impact of
Global Hawk unmanned aircraft dropwindsondes on tropical
cyclone analyses and forecasts. Mon. Wea. Rev., 146, 2297–
2314, https://doi.org/10.1175/MWR-D-17-0304.1.

}}, J. Sippel, A. Aksoy, and N. L. Baker, 2022: Recent advance-
ments for tropical cyclone data assimilation. Ann. N. Y.
Acad. Sci., 1517, 25–43, https://doi.org/10.1111/nyas.14873.

Davis, B., X. Wang, and X. Lu, 2021: A comparison of HWRF
six-hourly 4DEnVar and hourly 3DEnVar assimilation of in-
ner core tail Doppler radar observations for the prediction of
Hurricane Edouard (2014). Atmosphere, 12, 942, https://doi.
org/10.3390/atmos12080942.

Ditchek, S. D., J. A. Sippel, G. J. Alaka, S. B. Goldenberg, and L.
Cucurull, 2022: A systematic assessment of dropsonde impact
during the 2017–2020 hurricane seasons using the basin-scale
HWRF: Overall impacts. 35th Conf. on Hurricanes and Trop-
ical Meteorology, New Orleans, LA, Amer. Meteor. Soc.,
6B.2, https://ams.confex.com/ams/35Hurricanes/meetingapp.
cgi/Paper/401287.

}}, }}, P. Marinescu, and G. J. Alaka, 2023: Improving best
track verification of tropical cyclones: A new metric to iden-
tify forecast consistency. Wea. Forecasting, 38, 817–831,
https://doi.org/10.1175/WAF-D-22-0168.1.

Franklin, J. L., and M. DeMaria, 1992: The impact of omega
dropwindsonde observations on barotropic hurricane track
forecasts. Mon. Wea. Rev., 120, 381–391, https://doi.org/10.
1175/1520-0493(1992)120,0381:TIOODO.2.0.CO;2.

Goldenberg, S. B., S. G. Gopalakrishnan, V. Tallapragada, T.
Quirino, F. Marks, S. Trahan, X. Zhang, and R. Atlas, 2015:
The 2012 triply nested, high-resolution operational version of
the Hurricane Weather Research and Forecasting Model
(HWRF): Track and intensity forecast verifications. Wea.
Forecasting, 30, 710–729, https://doi.org/10.1175/WAF-D-14-
00098.1.

Harnisch, F., and M. Weissmann, 2010: Sensitivity of typhoon
forecasts to different subsets of targeted dropsonde observa-
tions. Mon. Wea. Rev., 138, 2664–2680, https://doi.org/10.1175/
2010MWR3309.1.

WEATHER AND FORECAS T ING VOLUME 38814

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/15/23 06:20 PM UTC

https://github.com/sditchek/GROOT
https://github.com/sditchek/GROOT
https://doi.org/10.1175/1520-0434(2002)017<1101:TYOOHS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<1101:TYOOHS>2.0.CO;2
https://doi.org/10.1175//2550.1
https://doi.org/10.1175/2007MWR2192.1
https://doi.org/10.1175/2009MWR3090.1
https://doi.org/10.1175/2009MWR3090.1
https://doi.org/10.1175/2011MWR3634.1
https://doi.org/10.1175/2011MWR3634.1
https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2
https://doi.org/10.1175/JAS3594.1
https://doi.org/10.1175/JTECH-D-17-0023.1
https://doi.org/10.1175/JTECH-D-17-0023.1
https://doi.org/10.1175/MWR-D-21-0124.1
https://doi.org/10.1175/WAF-D-16-0150.1
https://doi.org/10.1175/WAF-D-19-0028.1
https://doi.org/10.3390/atmos11080869
https://doi.org/10.1175/BAMS-D-20-0134.1
https://doi.org/10.1175/BAMS-D-20-0134.1
https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf
https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf
https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf
https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2
https://www.nhc.noaa.gov/verification/pdfs/Verification_2021.pdf
https://www.nhc.noaa.gov/verification/pdfs/Verification_2021.pdf
https://doi.org/10.1038/s41467-017-01546-9
https://doi.org/10.1038/s41467-017-01546-9
https://doi.org/10.1175/2010MWR3582.1
https://doi.org/10.1175/MWR-D-16-0332.1
https://doi.org/10.1175/MWR-D-17-0304.1
https://doi.org/10.1111/nyas.14873
https://doi.org/10.3390/atmos12080942
https://doi.org/10.3390/atmos12080942
https://ams.confex.com/ams/35Hurricanes/meetingapp.cgi/Paper/401287
https://ams.confex.com/ams/35Hurricanes/meetingapp.cgi/Paper/401287
https://doi.org/10.1175/WAF-D-22-0168.1
https://doi.org/10.1175/1520-0493(1992)120<0381:TIOODO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<0381:TIOODO>2.0.CO;2
https://doi.org/10.1175/WAF-D-14-00098.1
https://doi.org/10.1175/WAF-D-14-00098.1
https://doi.org/10.1175/2010MWR3309.1
https://doi.org/10.1175/2010MWR3309.1


Huang, B., X. Wang, D. T. Kleist, and T. Lei, 2021: A simulta-
neous multiscale data assimilation using scale-dependent
localization in GSI-based hybrid 4dEnVar for NCEP FV3-
based GFS. Mon. Wea. Rev., 149, 479–501, https://doi.org/10.
1175/MWR-D-20-0166.1.

Klotzbach, P. J., M. M. Bell, S. G. Bowen, E. J. Gibney, K. R.
Knapp, and C. J. Schreck, 2020: Surface pressure a more
skillful predictor of normalized hurricane damage than maxi-
mum sustained wind. Bull. Amer. Meteor. Soc., 101, E830–
E846, https://doi.org/10.1175/BAMS-D-19-0062.1.

Kren, A., L. Cucurull, and H. Wang, 2018: Impact of UAS Global
Hawk dropsonde data on tropical and extratropical cyclone
forecasts in 2016. Wea. Forecasting, 33, 1121–1141, https://doi.
org/10.1175/WAF-D-18-0029.1.

Kurosawa, K., and J. Poterjoy, 2022: A statistical hypothesis test-
ing strategy for adaptively blending particle filters and ensem-
ble Kalman filters for data assimilation. Mon. Wea. Rev., 151,
105–125, https://doi.org/10.1175/MWR-D-22-0108.1.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane data-
base uncertainty and presentation of a new database format.
Mon. Wea. Rev., 141, 3576–3592, https://doi.org/10.1175/
MWR-D-12-00254.1.

Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based
ensemble-variational hybrid data assimilation for HWRF for
hurricane initialization and prediction: Impact of various er-
ror covariances for airborne radar observation assimilation.
Quart. J. Roy. Meteor. Soc., 143, 223–239, https://doi.org/10.
1002/qj.2914.

}}, }}, M. Tong, and V. Tallapragada, 2017b: GSI-based, con-
tinuously cycled, dual-resolution hybrid ensemble–variational
data assimilation system for HWRF: System description and
experiments with Edouard (2014). Mon. Wea. Rev., 145,
4877–4898, https://doi.org/10.1175/MWR-D-17-0068.1.

Majumdar, S. J., 2016: A review of targeted observations. Bull.
Amer. Meteor. Soc., 97, 2287–2303, https://doi.org/10.1175/
BAMS-D-14-00259.1.

}}, M. J. Brennan, and K. Howard, 2013: The impact of drop-
windsonde and supplemental rawinsonde observations on
track forecasts for Hurricane Irene (2011). Wea. Forecasting,
28, 1385–1403, https://doi.org/10.1175/WAF-D-13-00018.1.

Marchok, T. P., 2002: How the NCEP tropical cyclone tracker
works. Preprints, 25th Conf. on Hurricanes and Tropical Mete-
orology, San Diego, CA, Amer. Meteor. Soc., P1.13, https://
ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.

}}, 2021: Important factors in the tracking of tropical cyclones
in operational models. J. Appl. Meteor. Climatol., 60, 1265–
1284, https://doi.org/10.1175/JAMC-D-20-0175.1.

NOAA, 2020: National hurricane operations plan. Office of the
Federal Coordinator for Meteorological Services and Sup-
porting Research (OFCM) Doc. FCM-P12-2020, NOAA, 178
pp., https://www.icams-portal.gov/resources/ofcm/nhop/2020_
nhop.pdf.

Poterjoy, J., 2022: Implications of multivariate non-Gaussian data as-
similation for multiscale weather prediction. Mon. Wea. Rev.,
150, 1475–1493, https://doi.org/10.1175/MWR-D-21-0228.1.

Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone de-
structive potential by integrated kinetic energy. Bull. Amer.
Meteor. Soc., 88, 513–526, https://doi.org/10.1175/BAMS-88-4-
513.

Pu, Z., X. Li, C. S. Velden, S. D. Aberson, and W. T. Liu, 2008:
The impact of aircraft dropsonde and satellite wind data on
numerical simulations of two landfalling tropical storms during

the tropical cloud systems and processes experiment. Wea. Fore-
casting, 23, 62–79, https://doi.org/10.1175/2007WAF2007006.1.

Rappaport, E. N., and Coauthors, 2009: Advances and challenges
at the National Hurricane Center. Wea. Forecasting, 24, 395–
419, https://doi.org/10.1175/2008WAF2222128.1.

Sellwood, K., J. A. Sippel, and A. Aksoy, 2020: Optimizing drop-
windsonde levels for data assimilation. 20th Symp. on Meteoro-
logical Observation and Instrumentation, Boston, MA, Amer.
Meteor. Soc., 5.6, https://ams.confex.com/ams/2020Annual/
webprogram/Paper365847.html.

Shi, J. J., S. Chang, and S. Raman, 1996: Impact of assimilations
of dropwindsonde data and SSM/I rain rates on numerical
predictions of Hurricane Florence (1988). Mon. Wea. Rev.,
124, 1435–1448, https://doi.org/10.1175/1520-0493(1996)124
,1435:IOAODD.2.0.CO;2.

Simpson, R. H., and H. Saffir, 1974: The hurricane disaster poten-
tial scale. Weatherwise, 27, 169–186.

Sippel, J. A., 2020: The use of reconnaissance aircraft data inweather
forecast models. NOAA (SECART) 2020HurricaneAwareness
Webinar Series, NOAA, accessed 27 May 2020, https://www.
noaa.gov/regions/2020-hurricane-awareness-webinars.

}}, Z. Zhang, L. Bi, and A. Mehra, 2021: Recent advances in
operational HWRF data assimilation. 34th Conf. on Hurri-
canes and Tropical Meteorology, online, Amer. Meteor. Soc.,
3C.2, https://ams.confex.com/ams/34HURR/meetingapp.cgi/
Paper/372789.

}}, X. Wu, S. D. Ditchek, V. Tallapragada, and D. T. Kleist,
2022: Impacts of assimilating additional reconnaissance data
on operational GFS tropical cyclone forecasts. Wea. Forecast-
ing, 37, 1615–1639, https://doi.org/10.1175/WAF-D-22-0058.1.

Tong, M., and Coauthors, 2018: Impact of assimilating aircraft re-
connaissance observations on tropical cyclone initialization
and prediction using operational HWRF and GSI ensemble–
variational hybrid data assimilation. Mon. Wea. Rev., 146,
4155–4177, https://doi.org/10.1175/MWR-D-17-0380.1.

Torn, R., 2020: Transitioning ensemble-based TC track and inten-
sity sensitivity to operations: Current status and future plans.
Tropical Cyclone Operations and Research Forum: Joint Hur-
ricane Testbed JHT, online, NOAA, 17 pp., https://www.nhc.
noaa.gov/jht/19-22reports/JHT1922_IHC_2020_Torn.pdf.

}}, 2021: Transitioning ensemble-based TC track and intensity
sensitivity to operations: Current status and future plans.
Tropical Cyclone Operations and Research Forum, Joint Hur-
ricane Testbed JHT, online, NOAA, 14 pp., https://www.nhc.
noaa.gov/jht/19-22reports/JHT1922_IHC_2021_Torn.pdf.

}}, and C. Snyder, 2012: Uncertainty of tropical cyclone best-
track information. Wea. Forecasting, 27, 715–729, https://doi.
org/10.1175/WAF-D-11-00085.1.

Trahan, S., and L. Sparling, 2012: An analysis of NCEP tropical
cyclone vitals and potential effects on forecasting models.
Wea. Forecasting, 27, 744–756, https://doi.org/10.1175/WAF-
D-11-00063.1.

Velden, C., and S. Goldenberg, 1987: The inclusion of high density
satellite wind information in a barotropic hurricane-track fore-
cast model. Preprints, 17th Conf. on Hurricanes and Tropical
Meteorology, Miami, FL, Amer. Meteor. Soc., 93 pp.

Weng, Y., and F. Zhang, 2016: Advances in convection-permitting
tropical cyclone analysis and prediction through EnKF assim-
ilation of reconnaissance aircraft observations. J. Meteor. Soc.
Japan, 94, 345–358, https://doi.org/10.2151/jmsj.2016-018.

Wick, G. A., and Coauthors, 2020: NOAA’s Sensing Hazards with
Operational Unmanned Technology (SHOUT) experiment

D I T CHEK E T A L . 815JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/15/23 06:20 PM UTC

https://doi.org/10.1175/MWR-D-20-0166.1
https://doi.org/10.1175/MWR-D-20-0166.1
https://doi.org/10.1175/BAMS-D-19-0062.1
https://doi.org/10.1175/WAF-D-18-0029.1
https://doi.org/10.1175/WAF-D-18-0029.1
https://doi.org/10.1175/MWR-D-22-0108.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1002/qj.2914
https://doi.org/10.1002/qj.2914
https://doi.org/10.1175/MWR-D-17-0068.1
https://doi.org/10.1175/BAMS-D-14-00259.1
https://doi.org/10.1175/BAMS-D-14-00259.1
https://doi.org/10.1175/WAF-D-13-00018.1
https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm
https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm
https://doi.org/10.1175/JAMC-D-20-0175.1
https://www.icams-portal.gov/resources/ofcm/nhop/2020_nhop.pdf
https://www.icams-portal.gov/resources/ofcm/nhop/2020_nhop.pdf
https://doi.org/10.1175/MWR-D-21-0228.1
https://doi.org/10.1175/BAMS-88-4-513
https://doi.org/10.1175/BAMS-88-4-513
https://doi.org/10.1175/2007WAF2007006.1
https://doi.org/10.1175/2008WAF2222128.1
https://ams.confex.com/ams/2020Annual/webprogram/Paper365847.html
https://ams.confex.com/ams/2020Annual/webprogram/Paper365847.html
https://doi.org/10.1175/1520-0493(1996)124<1435:IOAODD>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<1435:IOAODD>2.0.CO;2
https://www.noaa.gov/regions/2020-hurricane-awareness-webinars
https://www.noaa.gov/regions/2020-hurricane-awareness-webinars
https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/372789
https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/372789
https://doi.org/10.1175/WAF-D-22-0058.1
https://doi.org/10.1175/MWR-D-17-0380.1
https://www.nhc.noaa.gov/jht/19-22reports/JHT1922_IHC_2020_Torn.pdf
https://www.nhc.noaa.gov/jht/19-22reports/JHT1922_IHC_2020_Torn.pdf
https://www.nhc.noaa.gov/jht/19-22reports/JHT1922_IHC_2021_Torn.pdf
https://www.nhc.noaa.gov/jht/19-22reports/JHT1922_IHC_2021_Torn.pdf
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.1175/WAF-D-11-00085.1
https://doi.org/10.1175/WAF-D-11-00063.1
https://doi.org/10.1175/WAF-D-11-00063.1
https://doi.org/10.2151/jmsj.2016-018


observations and forecast impacts. Bull. Amer. Meteor. Soc.,
101, E968–E987, https://doi.org/10.1175/BAMS-D-18-0257.1.

Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted
observations of tropical cyclone movement based on the ad-
joint-derived sensitivity steering vector. J. Atmos. Sci., 64,
2611–2626, https://doi.org/10.1175/JAS3974.1.

}}, S.-G. Chen, C.-C. Yang, P.-H. Lin, and S. D. Aberson, 2012:
Potential vorticity diagnosis of the factors affecting the track
of Typhoon Sinlaku (2008) and the impact from dropwind-
sonde data during T-PARC. Mon. Wea. Rev., 140, 2670–2688,
https://doi.org/10.1175/MWR-D-11-00229.1.

Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2009:
An observing system experiment for Typhoon Conson
(2004) using a singular vector method and DOTSTAR data.
Mon. Wea. Rev., 137, 2801–2816, https://doi.org/10.1175/
2009MWR2683.1.

Zawislak, J., and Coauthors, 2022: Accomplishments of
NOAA’s airborne hurricane field program and a broader
future approach to forecast improvement. Bull. Amer.

Meteor. Soc., 103, E311–E338, https://doi.org/10.1175/
BAMS-D-20-0174.1.

Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop,
2009: Cloud-resolving hurricane initialization and prediction
through assimilation of Doppler radar observations with an
ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125,
https://doi.org/10.1175/2009MWR2645.1.

Zhang, X., S. G. Gopalakrishnan, S. Trahan, T. S. Quirino, Q.
Liu, Z. Zhang, G. Alaka, and V. Tallapragada, 2016: Repre-
senting multiple scales in the Hurricane Weather Research
and Forecasting modeling system: Design of multiple sets of
movable multilevel nesting and the basin-scale HWRF fore-
cast application. Wea. Forecasting, 31, 2019–2034, https://doi.
org/10.1175/WAF-D-16-0087.1.

Zhang, Z., J. A. Zhang, G. J. Alaka Jr., K. Wu, A. Mehra, and
V. Tallapragada, 2021: A statistical analysis of high-frequency
track and intensity forecasts from NOAA’s operational Hur-
ricane Weather Research and Forecasting (HWRF) modeling
system. Mon. Wea. Rev., 149, 3325–3339, https://doi.org/10.
1175/MWR-D-21-0021.1.

WEATHER AND FORECAS T ING VOLUME 38816

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/15/23 06:20 PM UTC

https://doi.org/10.1175/BAMS-D-18-0257.1
https://doi.org/10.1175/JAS3974.1
https://doi.org/10.1175/MWR-D-11-00229.1
https://doi.org/10.1175/2009MWR2683.1
https://doi.org/10.1175/2009MWR2683.1
https://doi.org/10.1175/BAMS-D-20-0174.1
https://doi.org/10.1175/BAMS-D-20-0174.1
https://doi.org/10.1175/2009MWR2645.1
https://doi.org/10.1175/WAF-D-16-0087.1
https://doi.org/10.1175/WAF-D-16-0087.1
https://doi.org/10.1175/MWR-D-21-0021.1
https://doi.org/10.1175/MWR-D-21-0021.1

